

GLYCOSIDES OF TWO XANTHONES AND A CHROMONE FROM ROOTS OF *CHROZOPHORA PROSTRATA*

AMULAYA AGRAWAL and J. SINGH

Department of Chemistry, University of Allahabad, Allahabad 211002, India

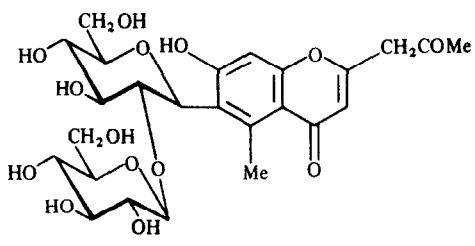
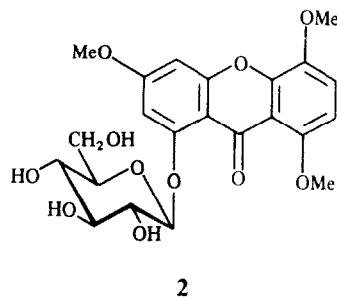
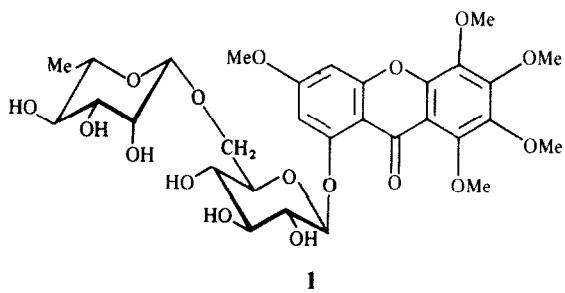
(Received 10 February 1988)

Key Word Index—*Chrozophora prostrata*, Euphorbiaceae, xanthone, chromone, glycosides.

Abstract—Three new glycosides, two xanthone glycosides, viz. 3,5,6,7,8-pentamethoxyxanthone-1-*O*-rhamnosyl (1→6) glucopyranoside, 3,5,8-trimethoxyxanthone-1-*O*-glucopyranoside and a chromone glycoside, viz. 2-acetyl-5-methyl-7-hydroxy-6-C-glucopyranosyl chromone-2"-*O*-glucopyranoside have been isolated from the roots of *Chrozophora prostrata*. The structures were elucidated by means of spectral studies.

INTRODUCTION

Chrozophora prostrata is known to be rich in leucoanthocyanidin, flavonoid and coumarin derivatives [1]. The ashes of roots of *C. prostrata* are given to children as a cure for coughs. In the present communication, the isolation and characterization of glycosides of two xanthones and a chromone is described. Identification of these compounds may be of considerable help in understanding the therapeutic properties of the roots of *C. prostrata*.




RESULTS AND DISCUSSION

The ethanolic extract of the roots yielded two xanthone glycosides (**1**) $C_{30}H_{38}O_{17}$ and (**2**) $C_{22}H_{24}O_{11}$, and a chromone glycoside (**3**) $C_{25}H_{32}O_{14}$.

Compound (**1**), $C_{30}H_{38}O_{17}$, mp 270° gave on acid hydrolysis an aglycone, $C_{18}H_{18}O_8$, and two sugars, glucose and rhamnose. The aglycone was identified as 1-hydroxy-3,5,6,7,8-pentamethoxy-xanthone on the basis of standard colour reactions, spectral data (UV, IR, NMR and mass) and co-chromatography with an authentic sample [2]. Since there was only one hydroxyl group at position C-1, obviously there was only position possible for the attachment of the sugar moiety. 1H NMR of the glycoside showed a broad signal at δ 0.95 ppm, typical of the rhamnose methyl group. The nature of the intersugar linkage was deduced by comparison of the rhamnose methyl group signal with corresponding signals of neohesperidose δ 1.20 (*d*) and a rutinoside δ 0.80-0.95 (*br*) ppm of the rutinoside type [3, 4]. The permethylated glycoside, on hydrolysis gave two partially methylated sugars, identified as 2,3,4-tri-*O*-methyl glucose and 2,3,4-tri-*O*-methyl rhamnose. This established that the two sugars, were present in the form of a (1→6) bioside [5, 6] and linked at position-1 of the aglycone. On the basis of above findings, the structure of the compound could be represented as 3,5,6,7,8-pentamethoxy xanthone-1-*O*-rhamnosyl (1→6) glucopyranoside (**1**).

Compound (**2**), $C_{22}H_{24}O_{11}$, mp 240° gave on acid hydrolysis an aglycone, $C_{16}H_{14}O_6$, and glucose. The aglycone was identified as 1-hydroxy-3,5,8-trimeth-

oxyxanthone [7, 8] on the basis of UV, IR, 1H NMR and chemical degradation. Easy acid hydrolysis of the glycoside clearly indicated a C—O—C type of linkage between

3

the aglycone and sugar. The site of attachment of the sugar was proved to be C-1. Thus, this glycoside has been identified as 3,5,8-trimethoxyxanthone-1-O-glucopyranoside.

Compound (3), $C_{25}H_{32}O_{14}$, mp 290° gave on acid hydrolysis a sugar and an aglycone (4) which gave a positive colour test for a glycoside but it could not be hydrolysed by acid showing the presence of C-C linkage. On oxidation with ferric chloride 4 gave an aglycone (5) and glucose. 4 was found to be 7-hydroxychromone with the help of colour reactions and UV spectroscopy [9]. The absence of an hydroxyl group, α -to the carbonyl group, was confirmed by its UV spectrum (no shift with $AlCl_3$). Sharp and strong bands at 1717 and 1663 cm^{-1} in the IR spectrum suggested the presence of a saturated carbonyl and an α,β -unsaturated carbonyl group, respectively.

Three aromatic protons at δ 6.10 (s, 1H), 6.69 (d, 1H, J = 2 Hz) and 6.99 (d, 1H, J = 2 Hz) in 4 were assigned to the positions C-3, C-6 and C-8 with the help of the 1H NMR spectrum [10]. A three proton signal at δ 2.66 ppm was found to be a -Me group at position C-5 [11]. A second three proton singlet at δ 2.20 and a two proton singlet at δ 3.79 ppm corresponded to -Ac and -COCH₂-, respectively, of an acetyl group which must be present at C-2. The aglycone was, therefore, 2-acetyl-5-methyl-7-hydroxy chromone. This was also confirmed by co-chromatography with an authentic sample.

The mass spectrum of the 4 showed three strong peaks due to the sequential loss of three molecules of water. The intensity of the $[M - 148]^+$ peak relative to $[M - 149]^+$ was 42%, thus indicating that the glucose moiety must be attached to the C-6 position [12] of the chromone nucleus. This was further confirmed by 1H and ^{13}C NMR data.

Attachment of the second glucose unit to the C-6 glucose and not directly to the 7-hydroxy was established by UV shifts. This established that the 3 was an α'' -O-glucoside of 6-C-glucosyl-2-acetyl-5-methyl-7-hydroxychromone. There was no acetyl 1H NMR signal in the range δ 1.70–1.85 ppm for the acetyl derivative of 4. Since a C-2''-acetoxy is expected to give rise to a signal in this region [13–15], it is concluded that the second sugar unit was attached at position-2''. This was also confirmed by the absence of $[M - 15]^+$ and $[M - 31]^+$ peaks in the mass spectrum of permethylated compounds 3 [16]. Thus, the structure of 3 was assigned as 2-acetyl-5-methyl-7-hydroxy-6-C-glucopyranosyl chromone-2''-O-glucopyranoside.

EXPERIMENTAL

Air-dried, crushed and defatted roots of *C. prostrata* were extd with boiling EtOH. The extract was concd and poured into ice-H₂O separating into H₂O sol and insol. fractions. The H₂O sol. portion was concd and subjected to silica gel CC. Compound 1 was eluted with C₆H₆–EtOAc (1:1), 2 with EtOAc–MeOH (3:2) and 3 with EtOAc–MeOH (3:7).

Compound 1, 3,5,6,7,8-pentamethoxyxanthone-1-O-rhamnosyl (1→6) glucopyranoside. $C_{30}H_{38}O_{17}$, mp 270°. UV λ_{max}^{MeOH} nm 255, 310, 350 (sh), + $AlCl_3$, 260, 315, 355, + NaOAc no shift 1H NMR [CDCl₃, 100 MHz] δ 0.95 (br, rhamnosyl methyl), 3.40–3.90 (br, 11H, sugar protons), 3.86 (s, 3H, -OMe), 3.92 (s, 3H, -OMe), 4.00

(s, 6H, 2 \times -OMe), 4.15 (s, 3H, -OMe), 5.00 (s, 1H, H-1'' rhamnosyl), 5.40 (s, 1H, H-1'' glucosyl), 6.40 (d, 1H, J = 2 Hz, C-2), 6.70 (d, 1H, J = 2 Hz, C-4) ppm.

Hydrolysis of 1 with 7% H₂SO₄ afforded an aglycone, C₁₈H₁₈O₈, mp 120°. UV λ_{max}^{MeOH} nm 240 (sh), 258, 315, 355 (sh), + $AlCl_3$, 226, 237, 273, 347, 406, + NaOAc, 240, 274, 304, (sh), 319, 385. IR ν_{max}^{KBr} cm⁻¹ 3300, 1659, 1590, 1565. 1H NMR [CDCl₃, 100 MHz] δ 3.88 (s, 3H, -OMe), 3.93 (s, 3H, -OMe), 4.00 (s, 6H, 2 \times -OMe), 4.12 (s, 3H, -OMe), 6.31 (d, 1H, J = 2 Hz, C-2), 6.43 (d, 1H, J = 2 Hz, C-4), 13.40 (s, 1H, OH) ppm. MS, m/z 362 (79%), 361 (2), 347 (100), 345 (2), 344 (7), 333 (6), 332 (2), 329 (2), 319 (8), 304 (9), 303 (5). Acetate (with pyridine–Ac₂O at room temp, 48 hr), mp 132°. UV λ_{max}^{MeOH} nm 245, 280, 304, 339 (sh) IR ν_{max}^{KBr} cm⁻¹ 1760, 1665, 1635, 1598. 1H NMR [CDCl₃, 100 MHz] δ 2.84 (s, 3H, 1-OAc), 3.92 (s, 9H, 3 \times -OMe), 3.99 (s, 3H, -OMe), 4.11 (s, 3H, -OMe), 6.55 (d, 1H, J = 2.5 Hz, C-2), 6.82 (d, 1H, J = 2.5 Hz, C-4) ppm.

Compound 2, 3,5,8-trimethoxyxanthone-1-O-glucopyranoside. C₂₂H₂₄O₁₁, mp 240°. 1H NMR [CDCl₃, 100 MHz] δ 3.50–3.85 (br, 6H, sugar protons), 3.86 (s, 3H, -OMe), 3.97 (s, 6H, 2 \times -OMe), 5.42 (d, 1H, J = 5 Hz, H-1'' glucosyl), 6.38 (d, 1H, J = 3 Hz, C-2), 6.52 (d, 1H, J = 3 Hz, C-4), 6.73 (d, 1H, J = 10 Hz, C-7), 7.20 (d, 1H, J = 10 Hz, C-6) ppm. Hydrolysis with 7% H₂SO₄ gave an aglycone C₁₆H₁₄O₆, mp 214°. UV λ_{max}^{MeOH} nm: 220, 240 (sh), 252, 275, 300 (sh), 370 (sh), + $AlCl_3$, 258, 268, 283, 321, 363, + NaOH, 244, 264, 274, 331, 380 (sh) IR ν_{max}^{KBr} cm⁻¹ 3300, 1655, 1620, 1580. 1H NMR [CDCl₃, 100 MHz] δ 3.86 (s, 3H, -OMe), 3.96 (s, 3H, -OMe), 3.97 (s, 3H, -OMe), 6.32 (d, 1H, J = 3 Hz, C-2), 6.50 (d, 1H, J = 3 Hz, C-4), 6.72 (d, 1H, J = 10 Hz, C-7), 7.20 (d, 1H, J = 10 Hz, C-6) ppm.

Compound 3, 2-acetyl-5-methyl-7-hydroxy-6-C-glucopyranosyl chromone 2''-O-glucopyranoside. C₂₅H₃₂O₁₄, mp 290°. UV λ_{max}^{MeOH} nm 216, 248, 254, 297, + $AlCl_3$; no shift, + NaOEt, 337, + NaOAc 304. IR ν_{max}^{KBr} cm⁻¹ 3300, 1717, 1663, 1595, 1497, 1321, 1217, 1156, 1081, 911. 1H NMR [DMSO-*d*₆, 100 MHz] δ 2.20 (br s, 3H, -COMe) 2.64 (s, 3H, C-Me), 3.40–3.85 (m, 11H, sugar protons), 3.79 (s, 2H, -COCH₂–), 4.24 (d, 1H, J = 7 Hz, H = 1''), 4.72 (d, 1H, J = 6 Hz, H = 1''), 6.10 (s, 1H, C-3), 6.98 (s, 1H, C-8) ppm. ^{13}C NMR δ 160.6 (C-2), 112.4 (C-3), 178.5 (C-4), 114.6 (C-4a), 126.5 (C-6), 160.8 (C-7), 100.6 (C-8), 159.0 (C-1a), 47.8 (C-9), 202.4 (C-10), 29.8 (C-11), 22.5 (C-12), 71.4 (C-1''), 81.7 (C-2''), 78.2 (C-3''), 70.1 (C-4''), 81.1 (C-5''), 60.9 (C-6''), 105.1 (C-1'''), 74.3 (C-2'''), 76.1 (C-3'''), 69.3 (C-4'''), 76.1 (C-5'''), 60.3 (C-6''') Permethylated glycoside, UV λ_{max}^{MeOH} nm 213, 227, 253, 304, 384, 403. IR ν_{max}^{KBr} cm⁻¹ 1721, 1647, 1600, 1527, 1314, 1218, 1172. MS, m/z 668, 449, 433, 417, 385, 289, 275, 273, 259. Hydrolysis: a soln of 3 was hydrolysed with 7% HCl and the aglycone-C-glycoside crystallized from EtOAc–petrol, mp 190°. UV λ_{max}^{MeOH} nm: 216, 248, 254, 297. IR ν_{max}^{KBr} cm⁻¹ 3300, 1720, 1665, 1595, 1497, 1156, 1035, 1010, 730–720. Permethylated aglycone-C-glycoside, MS (m/z) 464, 449, 433, 417, 385, 289, 275, 273, 259. Acetate (with pyridine–Ac₂O), 1H NMR [DMSO-*d*₆, 100 MHz] δ 1.94 (s, 3H, -OAc), 2.00 (s, 6H, 2 \times -OAc), 2.06 (s, 3H, -OAc), 2.46 (s, 3H, -OAc), 2.20 (s, 3H, -COMe), 2.68 (s, 3H, -C-Me), 3.80 (s, 2H, -COCH₂–), 4.56 (d, 1H, J = 7 Hz, H = 1''), 6.09 (s, 1H, C-3), 7.58 (s, 1H, C-8) ppm. Aglycone, UV λ_{max}^{MeOH} nm: 217, 245, 250, 295. 1H NMR [DMSO-*d*₆, 100 MHz] δ 2.20 (br s, 3H, -COMe), 2.66 (s, 3H, C-Me), 3.79 (s, 2H, -COCH₂–), 6.10 (s, 1H, C-3), 6.69 (d, 1H, J = 2 Hz, C-6), 6.99 (d, 1H, J = 2 Hz, C-8) ppm.

Acknowledgement—A. A. is grateful to the C.S.I.R., India for the award of a Junior Research Fellowship.

REFERENCES

- 1 El-Tawil, B. A. H. (1983) *Arab Gulf J. Sci. Res.* **1**, 395
- 2 Vander Sluis, W. G. and Labadie, R. P. (1985) *Phytochemistry* **24**, 2601
- 3 Kutney, J. P., Warnock, W. D. C. and Gilbert, B. (1970) *Phytochemistry* **9**, 1877.
- 4 Sherwood, R. T. and Sharma, M. (1973) *Phytochemistry* **12**, 2275
- 5 Horhammer, L. and Hansel, R. (1955) *Arch. Pharm. Berlin* **228**, 315
- 6 Hirst, E. L. and Jones, J. K. N. (1949) *Discs Faraday Soc.* **7**, 268
- 7 Komatsu, M., Tomimori, T. and Mikuriya, M. (1969) *Chem. Pharm. Bull.* **17**, 155
- 8 Ghosal, S., Chaudhuri, R. K. and Nath, A. (1971) *J. Indian Chem. Soc.* **48**, 589
- 9 Sen, K. and Bagchi, P. (1959) *J. Org. Chem.* **24**, 316
- 10 Haynes, L. J. and Holdsworth, D. K. (1970) *J. Chem. Soc. (C)*, 2581
- 11 Speranza, G., Gramatica, P., Dada, G. and Manutto, P. (1985) *Phytochemistry* **24**, 1571
- 12 Prox, A. (1968) *Tetrahedron* **24**, 3697
- 13 Gentili, B. and Horowitz, R. M. (1967) *J. Org. Chem.* **33**, 1571
- 14 Hillis, W. E. and Horn, D. H. S. (1965) *Aust. J. Chem.* **18**, 531
- 15 Holdsworth, D. K. (1973) *Phytochemistry* **12**, 2011
- 16 Bouillant, M. L., Basset, A., Favre-Bonvin, J. and Chopin, J. (1978) *Phytochemistry* **17**, 527

Phytochemistry, Vol. 27, No. 11, pp. 3694-3696, 1988
Printed in Great Britain

0031 9422/88 \$3.00 + 0.00
Pergamon Press plc

TWO XANTHONES FROM *GARCINIA MANGOSTANA*

MEHTAB PARVEEN and NIZAM UD-DIN KHAN*

Department of Chemistry, Aligarh Muslim University, Aligarh 202 001, India

(Received in revised form 8 February 1988)

Key word Index—*Garcinia mangostana*, Guttiferae, 1,5,8-trihydroxy-3-methoxy-2-[3-methyl-2-butenyl] xanthone, 1,6-dihydroxy-3-methoxy-2-[3-methyl-2-butenyl] xanthone, gartanin; ¹H NMR, MS

Abstract—Two new xanthones, 1,5,8-trihydroxy-3-methoxy-2-[3-methyl-2-butenyl] xanthone and 1,6-dihydroxy-3-methoxy-2-[3-methyl-2-butenyl] xanthone were isolated alongwith the known xanthone gartanin from the leaves of *Garcinia mangostana* and their structures elucidated by ¹H NMR, IR and mass spectral studies

INTRODUCTION

Garcinia mangostana L. is known for its medicinal properties. Morellin and neomorellin isolated from *G. morella* have been used as antiprotozoal [1] and anti-bacterial principles [2, 3]. The present paper reports the isolation and characterization of two new xanthones **2** and **3** alongwith the known xanthone gartanin (**1**) from the leaves of *Garcinia mangostana* in addition to several other xanthones reported earlier by other workers [4-6].

RESULTS AND DISCUSSION

Silica gel column chromatography of the benzene extract of dried and powdered leaves of *G. mangostana* yielded two crystalline compounds (**1** and **2**). Compound **1** was found to be identical with gartanin (mp, IR, ¹H NMR and MS) reported earlier from fruit hull of *G. mangostana* [7]. Recrystallization of **2** yielded a yellow amorphous powder, C₁₉H₁₈O₆ (based on [M]⁺ at *m/z*

342) which in ethanolic solution gave a red colour with *p*-benzoquinone (gossypetone reaction) indicating the presence of a *p*-quinol moiety [8]. It showed UV absorption at λ_{max} 220, 250, 280 and 310 nm in methanol and in the IR spectrum (KBr) ν_{max} 3400 (phenolic OH), 1775 ($\text{C}=\text{O}$), 1650 and 1600 (aromatic system) were noted. The ¹H NMR spectrum of **2** showed singlets at δ 1.62 and 1.72, each integrating for three protons for geminal methyl groups, a broad signal at δ 3.25 for methylene protons, a singlet at δ 3.92 for the three methoxy protons and a broad triplet integrating for one proton at δ 5.08 for an olefinic proton. A pair of *ortho* coupled doublets ($J=8.8$ Hz) at δ 6.58 and 7.24 were attributable to H-6 and H-7 of the xanthone nucleus [7]. A singlet at δ 6.64 integrating for one proton was assigned to H-4 by comparison with other xanthones [9] unsubstituted at position 4. Hydroxy protons showed broad signals at δ 10.91, 11.02 and 11.03. The mass spectrum showed a molecular ion at *m/z* 342 and base peak at *m/z* 287 [M]